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Abstract. Extending the classical principal component analysis (PCA), the

kernel PCA (Schölkopf, Smola and Müller, 1998) effectively extracts nonlinear

structures of high dimensional data. But similar to PCA, the kernel PCA

can be sensitive to outliers. Various approaches have been proposed in the

literature to robustify the classical PCA. However, it is not immediately clear

how these approaches can be “kernelized” in practice. In this paper, we propose

a robust kernel PCA procedure. We show that the proposed method can

be easily computed. Simulations and a real example in the financial service

also demonstrate the competitive performance of our approach when there are

outlying observations.

1. Introduction

Principal component analysis (PCA) is a linear transformation that seeks a

coordinate system for a set of multivariate observations such that the greatest

variance by any projection of the data comes to lie on the first coordinate, the

second greatest variance on the second coordinate, and so on. The new coordinates

are referred to as the principal components. By keeping only the first few principal

components, PCA achieves dimension reduction while retaining characteristics of

the dataset that contribute most to its variation (Jolliffe, 1986).

PCA extracts linear features of high dimensional data. In many applications,

however, this can be restrictive and it may be more appropriate to consider nonlin-

ear structures of the data. In recent years, several nonlinear extensions of PCA have

been proposed in the literature (Oja, 1982; Hastie and Stuetzle, 1989; Oja, 1991;
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Bregler and Omohundro, 1994; Schölkopf et al., 1998). In particular, Schölkopf et

al. (1998) introduced the kernel PCA. To allow nonlinear features, the kernel PCA

performs the classical PCA in a feature space that are nonlinear transformations of

the original input variables. Clearly this notion only has conceptual value because

the feature space can be of infinite dimension to allow flexible nonlinear features.

Nevertheless, Schölkopf et al. (1998) showed that the computation of the kernel

PCA only involves the inner product in the feature space. Since the inner product

in the feature space can be evaluated through a kernel operator, the kernel PCA

can be computed efficiently thanks to the so-called “kernel trick” (Schölkopf and

Smola, 2002). The kernel PCA has seen the explosion of its popularity since its

introduction and has proven to be highly successful in various applications such as

image analysis, gene expression data analysis among many others.

It is widely recognized that PCA and the kernel PCA can be extremely sensitive

to outlying observations, and conclusions drawn based on contaminated principal

components can be misleading. Several ways of robustifying the classical PCA

have been proposed in the literature (Jackson, 1991). Among many others, these

approaches include employing robust estimate of the covariance matrix (Croux and

Haesbroeck, 2000) or measure of variation that is more robust than the variance

(Ibazizen and Dauxois, 2003). Despite their success in the case of PCA, it is not

immediately clear how these approaches can be extended to the kernel PCA.

To fill in this void, we propose a robust kernel PCA in this paper. Similar to the

case of PCA, we use the mean absolute deviation (MAD) to measure the variation

by a projection of the data, which is known to be more robust than the variance.

We consider applying this robust PCA in the feature space. At the first glance,

such a procedure can not be “kernelized” since operations other than inner product

are involved in computing MAD. To overcome this problem, we re-formulate our

robust kernel PCA using only the inner product in the feature space thanks to the

duality property of matrix norms. We also introduce a natural measure to examine

the robustness of the original kernel PCA and the proposed robust kernel PCA.

We show that this robustness measure can be evaluated using the kernel operator

and therefore readily computable for both methods. We use this new measure of

influence to show that the robust kernel PCA is much less sensitive to the outlying

observations than the original kernel PCA.

The rest of paper is organized as follows. The methodology of the robust

kernel PCA is introduced in the next section. In Section 3, we compare the original
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kernel PCA and the robust kernel PCA based on a perturbation analysis and show

that an outlying observation may have arbitrarily large influence on the original

kernel PCA whereas its influence on the robust kernel PCA is always bounded by

a constant smaller than one. Section 4 presents a simulation study to demonstrate

the competitive performance of the robust kernel PCA. To further illustrate the

method, we analyze a real data in financial service area using the proposed method

in Section 5. We conclude with some discussions in Section 6.

2. Robust Kernel PCA

Given a set of centered observations xk = (xk1, . . . , xkp)′, k = 1, . . . , n, PCA

seeks directions that maximize the variance of the projection of the data. For

example, the first principal component is given by

(2.1) arg max
β

n∑

k=1

(x′kβ)2

It is well known that the variance is extremely sensitive to outliers. To robustify

PCA, one can use a more robust measure of variation. In this paper, we consider

using MAD and define our first principal component as

(2.2) arg max
‖β‖2=1

n∑

k=1

|x′kβ|

To consider nonlinear features of x that come from a functional space F , we can

apply this robust procedure to the basis functions of F , ψ1(x), ψ2(x), . . .. Without

loss of generality, assume that
∑

k ψi(xk) = 0 for any i. We look for a vector β of

the same dimension as the basis functions such that

(2.3) β = arg max
‖β‖2=1

n∑

k=1

|Ψ(xk)′β|

where Ψ(x) = (ψ1(x), ψ2(x), . . .)′.

The functional space F is often taken to be a reproducing kernel Hilbert space

(Wahba, 1990). In such situations, (2.3) may not be computable since F can have

infinite dimension in a genuine nonparametric setup. A powerful technique to get

around this problem is by the so-called “kernel trick” (Schölkopf and Smola, 2002).

Although there are infinitely many basis functions, the inner product in the feature

space can always be computed through a kernel operator. The key step therefore is

to express the objective in a formulation using only inner products, which is clearly

not the case for (2.3).
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To accomplish this goal, we note the duality between the matrix `p norm and

`q norm given that 1/p + 1/q = 1. Simple derivation leads to the following matrix

transposition invariant property (Choulakian, 2005). Let A be a m × n matrix,

define

(2.4) ‖A‖pr = max
‖x‖r=1:x∈Rn

‖Ax‖p,

where ‖ · ‖p is a vector p-norm and p, r > 0. The transposition invariant property

states that

(2.5) ‖A‖pr = ‖A′‖sq,

where

(2.6)
1
p

+
1
q

= 1,
1
r

+
1
s

= 1.

Now define Aij = ψj(xi). Then an application of (2.5) implies that

(2.7) max
‖β‖2=1

n∑

k=1

|Ψ(xk)′β| = ‖A‖12 = ‖A′‖2∞ = max
‖α‖∞=1

√
α′AA′α

Note that the (i, j) entry of AA′ is 〈Ψ(xi),Ψ(xj)〉 = K(xi,xj). To evaluate

the right hand side of (2.7), it is sufficient to know the kernel operator K(·, ·). This

kernel representation allows us to compute the value of the inner product in F
without having to carry out the map Ψ. This method was previously used by Boser

et al. (1992) to extend the Generalized Portrait hyperplane classifier of Vapnik and

Chervonenkis (1974) to nonlinear support vector machines by substituting a pre-

specified kernel function K(·, ·) for all occurrences of inner products. The readers

are referred to Schölkopf and Smola (2002) for a detailed account of this so-called

“kernel trick”. It is also known that there is a one-to-one correspondence between

a reproducing kernel Hilbert space and a positive definite kernel operator K(·, ·).
For this reason, it is often times convenient to directly specify the kernel operator

instead of the functional space itself. Kernels that are commonly used in practice

include the polynomial kernels and Gaussian kernels.

The polynomial kernel of degree d is given by

(2.8) K(x,y) = (〈x,y〉+ 1)d
.

Besides the polynomial kernel, Gaussian kernel

(2.9) K(x,y) = exp
(
−‖x− y‖22

σ2

)

is also very popular.
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With slight abuse of notation, denote K a n × n matrix whose (i, j) entry is

K(xi,xj). Then we can rewrite the right hand side of (2.7) as

(2.10) α̂(1) = arg max
‖α‖∞=1:α∈Rn

√
α′Kα = arg max

‖α‖∞=1:α∈Rn
α′Kα,

where the superscript is used to indicate that it corresponds to the first principal

component.

Once α(1) is obtained, again by the transposition invariant property, the maxi-

mizer of the left hand side of (2.7) is given by β̂(1) = A′α(1)/
√

(α(1))′Kα(1), which

again requires the knowledge of map Ψ. Fortunately, we are only interested in the

projection of a data point x into the principal components, which can be computed

as

(2.11)

Ψ(x)′β(1) =
Ψ(x)′A′α(1)

√
(α(1))′Kα(1)

=
∑n

k=1 α
(1)
k 〈Ψ(x), Ψ(xk)〉√
(α(1))′Kα(1)

=
∑n

k=1 α
(1)
k K(x,xk)√

(α(1))′Kα(1)
.

After the first principal component is obtained, we then target at the second

principal component which is orthogonal to the first one. We first project the

data from the feature space F into its linear subspace that is orthogonal to the

first principal component. Note that the second principal component is now the

first principal component of the projected data. The aforementioned procedure for

the first principal component can then be applied if we know how to compute the

kernel operator in the linear subspace. Let Ψ(x) be a point in F , then Ψ(x) −
β̂(1)(β̂(1))′Ψ(x) is its projection into the linear subspace that is orthogonal to β̂(1).

The inner product of the linear subspace can be calculated:

K(2)(x,y) = 〈Ψ(x)− β̂(1)(β̂(1))′Ψ(x), Ψ(y)− β̂(1)(β̂(1))′Ψ(y)〉
= 〈Ψ(x), Ψ(y)〉 − 2〈Ψ(x), β̂(1)(β̂(1))′Ψ(y)〉

+〈β̂(1)(β̂(1))′Ψ(x), β̂(1)(β̂(1))′Ψ(y)〉
= 〈Ψ(x), Ψ(y)〉 − 〈Ψ(x), β̂(1)(β̂(1))′Ψ(y)〉(2.12)

Note that β̂(1) = A′α(1)/
√

(α(1))′Kα(1)

(2.13)

〈Ψ(x), β̂(1)(β̂(1))′Ψ(y)〉 =
Ψ(x)′A′α(1)(α(1))′AΨ(y)

(α(1))′Kα(1)
=

∑n
i,j=1 α

(1)
i α

(1)
j K(x,xi)K(xj ,y)

(α(1))′Kα(1)
.

Therefore,

(2.14) K(2)(x,y) = K(x,y)−
∑n

i,j=1 α
(1)
i α

(1)
j K(x,xi)K(xj ,y)

(α(1))′Kα(1)
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which can be computed without knowing Ψ.

The rest of the principle components can be computed in a similar fashion. In

general, the kernel operator needed for the rth principal component is

(2.15) K(r)(x,y) = K(x,y)− 〈Ψ(x),WΨ(y)〉

where W = (β(1), . . . , β(r−1))(β(1), . . . , β(r−1))′.

To sum up, our proposed robust kernel PCA method can be computed using

the following recipe:

Algorithm 1 Compute First R Robust Kernel Principal Components

Step 1. Compute Kij = K(xi,xj) for all i, j = 1, . . . , n.

Step 2. Center the kernel matrix K̄ = K − 1K/n−K1/n + 1K1/n2, where 1 is

a n× n matrix with ones.

Step 3. Compute the first principal component through α using (2.10) and kernel

K̄.

Step 4. For r = 2 to R

(a) Compute the kernel matrix (K(r)(xi,xj)) using (2.15)

(b) Center the kernel matrix as in Step 2.

(c) Compute the rth principal component using (2.10) with the kernel ma-

trix obtained

3. Perturbation Analysis

The influence function is a commonly used measure of the robustness for a

statistical procedure. The influence function of a statistical functional T0(F ) is

defined as

(3.1) ICT0,F (z) = lim
ε→0

T0(Fε)− T0(F )
ε

=
∂T0(Fε)

∂ε

∣∣∣∣
ε=0

where F is a distribution function, Fε = (1 − ε)F + εδz and δz is a point mass

at z. Of particular interest is the choice of z = xi, ε = 1/(n − 1) and F being

the empirical distribution function, which amounts to measuring the influence of

deleting the ith case (Cook and Weisberg, 1982). Instead of deleting cases one at

a time, some authors have suggested to perturb a single case and the influence of

the corresponding case is investigated through the deriviative of the perturbation.

To formalize this approach, assign each case a weight wi (i = 1, . . . , n). Denote Tw



A NOTE ON ROBUST KERNEL PRINCIPAL COMPONENT ANALYSIS 7

the statistic with weights w = (w1, . . . , wn)′. The influence of the ith case is given

as

(3.2)
∂Tw

∂wi

∣∣∣∣
w=(1,...,1)′

In the case of the kernel PCA, let β be a principal component in F . The

influence of the ith observation on the projection of a future data point x0 is

(3.3) Ψ(x0)′
∂β

∂wi

∣∣∣∣
w=(1,...,1)′

.

It is therefore natural to measure the robustness of β using

(3.4) IFi(β) =

∣∣∣∣∣

∣∣∣∣∣
∂β

∂wi

∣∣∣∣
w=(1,...,1)′

∣∣∣∣∣

∣∣∣∣∣

2

2

To fix ideas, we consider only the first principle component β̂(1) in the following

discussion. We begin with the original kernel PCA of Schölkopf et al. (1998). Note

that β̂(1) is the linear principal component in F , Critchley (1985) has shown that

(3.5) IFi(β̂(1)) =
(

2
n

)2 (
(Ψ(xi)′β̂(1)

)2 ∑
r>1

(
Ψ(xi)′β̂(r)

)2

(λ̂1 − λ̂r)2
,

where λ̂′rs are the eigenvalues corresponding to α̂(r). Clearly, the influence function

is unbounded for certain outlying observations.

To evaluate this influence function, we need to compute Ψ(xi)′β̂(r), the projec-

tion of the ith observation on the rth principal component. To this end, we apply

the transposition invariant property to (2.1),

(3.6) max
β

n∑

k=1

(x′kβ)2 = max
α

α′Kα.

Therefore, β̂(1) = A′α̂(1)/
√

(α̂(1))′Kα̂(1) where α̂(1) is the first principal component

of K. Now the influence function can be re-written in terms of α̂(1):

(3.7) IFi(β̂(1)) =
(

2
n

)2 (
Kiα̂

(1)
)2

(α̂(1))′Kα̂(1)

∑
r>1

(
Kiα̂

(r)
)2

(α̂(r))′Kα̂(r)(λ̂1 − λ̂r)2

where Ki is the ith row of K. Note that (3.7) can be computed without knowing

the map Ψ.

In the case of robust kernel PCA, after introducing the weights w1, . . . , wn, we

can rewrite (2.10) as

(3.8) α̂(1)∗ = arg max
‖α‖∞=1:α∈Rn

α′ΩKΩα,
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where Ω is a diagonal matrix whose (i, i) entry is wi. Because of the discrete nature

of the feasible set, α̂(1)∗ = α̂(1) given that w′is are sufficiently close to 1. Therefore,

after perturbation,

(3.9) β̂(1)∗ =
A′Ωα(1)∗

√
(α(1)∗)′ΩKΩα(1)∗ =

A′Ωα(1)

√
(α(1))′ΩKΩα(1)

Let wi = 1− ε and wj = 1 for all j 6= i

(3.10) β̂(1)∗ = β̂(1)− ε√
(α(1))′Kα(1)

(
A′Hiα

(1) − (α(1))′KHiα
(1)

(α(1))′Kα(1)
A′α(1)

)
+O(ε2),

where Hi is a n × n matrix with zeros except that its (i, i)th entry is one. It is

natural to define the influence of perturbing the ith observation as

IFi(β̂(1)) =

∣∣∣∣∣

∣∣∣∣∣
1√

(α(1))′Kα(1)

(
A′Hiα

(1) − (α(1))′KHiα
(1)

(α(1))′Kα(1)
A′α(1)

)∣∣∣∣∣

∣∣∣∣∣

2

2

(3.11)

=
(α(1))′HiKHiα

(1)

(α(1))′Kα(1)
−

(
(α(1))′KHiα

(1)
)2

(
(α(1))′Kα(1)

)2(3.12)

In contrast to the original kernel PCA, the influence function of the robust kernel

PCA is bounded by the first term. To be specific, note that ‖Hiα
(1)‖∞ = α

(1)
i ≤

‖α(1)‖∞ = 1. We have

(3.13) IFi(β̂(1)) ≤ (α(1))′HiKHiα
(1)

(α(1))′Kα(1)
< 1,

from the definition of α(1).

4. Simulation

To illustrate the methodology, we first consider a toy example. We use this

example to demonstrate the robustness of the proposed approach. We first ran-

domly generate fifty data points around a circle in the two dimensional space.

Each point is generated in the following fashion. First an angle is sampled from

a uniform distribution between 0 and 2π. The radius is then randomly generated

from N(3, 0.052). In the top panels of Figure 1 we plot the data points together

with the first original kernel principal component and first robust kernel principal

component. We use the polynomial kernel with degree two for both methods. The

two methods perform very similarly in this case. Now we add an outlier to the

data. The outlying observation is located at (5, 5). We plot in the bottom panels

of Figure 1 the first original kernel principal component and the first robust kernel
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principal component of the contaminated data. The result suggests that the influ-

ence of the outlier on the original kernel principal component is quite significant,

but marginal for the robust kernel principal component.

 Original Kernel PCA without Outlier

−2 −1 0 1 2

−2

−1

0

1

2

 Robust Kernel PCA without Outlier

−2 −1 0 1 2

−2

−1

0

1

2

Original Kernel PCA With Outlier Robust Kernel KPCA With Outlier

−15

−10

−5

0

5

10

15

20

Figure 1. First kernel principal component for the two-

dimensional circle example

Next, we examine the robustness property from a different angle by looking at

the perturbation analysis from Section 3. For each method, we compute the influ-

ence of each observation. To make the influence measure comparable in magnitude

for the two different methods, we scale the influence values so that the sum of the

influence over all observations is one. We compare the normalized influence of the

outlier for the two methods. The comparison is based on 1000 datasets simulated

in the aforementioned fashion. The pairwise comparison of the influence is given in

Figure 2, from which we see a significant reduction of the influence of the outlier

for our robust kernel PCA.

5. Real Example

We now apply our method to a real application in financial service. For the

purpose of surveillance, it is of great importance to characterize the normal trans-

action behavior in contrast with the suspicious ones. The banking experts often

times look over several important aspects of an account history such as the number
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Figure 2. Influence measure of the outlier for the two-dimensional

circle example

of transactions, the total amount of transactions among others in order to reveal

transaction patterns. In a particular example, the experts suspect that there might

be suspicious cases among a sample of 6321 accounts. The account history in a

one-month period is summarized by eight statistical measurements. For confiden-

tiality reason, we do not disclose more details about the data we are using here. It

is clearly very time-consuming for the expert to look over all the cases. Efficient

dimension reduction and visualization tool such as the kernel PCA would prove ex-

tremely helpful in this aspect. We apply the original kernel PCA and robust kernel

PCA on the data to extract the first two kernel principal components and project

all cases in a two dimensional space spanned by these components. We immediately

see from both plots that there might be outlying cases, or in other words abnormal

behavior in this dataset. The question next is which method more accurately char-

acterizes the normal pattern and identifies suspicious activities. To this end, we

re-run both kernel PCA methods with the corresponding outlying observations re-

moved and project all cases in the new principal component space. The projections

are given in the following figure with the red dots representing the outliers identified
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by each method. For the original kernel PCA, majority of the outlying observa-

tions found in the original analysis do not appear to be abnormal anymore. One

plausible explanation is that the original kernel principal components found on the

original data were influenced by the truly abnormal cases and the two-dimensional

projection fails to capture the real pattern of the normal activities. In contrast the

outlying observations found by robust kernel PCA still appear to be abnormal.
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200
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(a) Original Kernel PCA with “Outlier”
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(b) Original Kernel PCA without “Outlier”
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(c) Robust Kernel PCA with “Outlier”
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(d) Robust Kernel PCA without “Outlier”

6. Conclusion

It is known that the kernel PCA may suffer from the presence of outlying

observations. Taking advantage of the dual matrix norms, we propose a robust

kernel PCA procedure in this paper. We demonstrate by a simulation study and

a real application that the proposed method is more robust to outliers than the

original kernel PCA.
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A more general class of principal direction can be given in the feature space as

(6.1) arg max
‖β‖2=1

‖A′β‖p,

for some 1 ≤ p ≤ 2. The original kernel PCA takes p = 2 whereas our robust kernel

PCA chooses p = 1. Although we have focused on using the mean absolute deviation

in this note, it is worth noting that all these kernel PCA can be “kernelized” in the

same fashion as our robust kernel PCA. In particular, they are also determined by

a n dimensional vector

(6.2) arg max
‖α‖q=1

α′Kα,

where q is such that 1/p + 1/q = 1. We choose p = 1 because of the robustness

it brings about. Other choices may also have their own merits. We leave this for

future studies.
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