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Abstract Relationships between stream water and air temperatures are often modeled using linear or
nonlinear regression methods. Despite a strong relationship between water and air temperatures and a vari-
ety of models that are effective for data summarized on a weekly basis, such models did not yield consis-
tently good predictions for summaries such as daily maximum temperature. A good predictive model for
daily maximum temperature is required because daily maximum temperature is an important measure for
predicting survival of temperature sensitive fish. To appropriately model the strong relationship between
water and air temperatures at a daily time step, it is important to incorporate information related to the
time of the year into the modeling. In this work, a time-varying coefficient model is used to study the rela-
tionship between air temperature and water temperature. The time-varying coefficient model enables
dynamic modeling of the relationship, and can be used to understand how the air-water temperature rela-
tionship varies over time. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia,
North Carolina, and Georgia using daily maximum temperatures. It provides a better fit and better predic-
tions than those produced by a simple linear regression model or a nonlinear logistic model.

1. Introduction

Water temperature is a critical component of hydrologic systems [Keleher and Rahel, 1996; Caissie, 2006] and
may be a determining factor in water quality and biological condition. Fish and other aquatic organisms are
sensitive to extremes in temperature, as extremes affect the food sources, and the survival and distribution
of organisms. Brook trout, for example, prefer cooler water found in high elevation streams, and tempera-
tures greater than 21�C are viewed as highly stressful to the health of trout [Meisner, 1990; Beitinger et al.,
2000]. Growth, reproduction, migration, and food availability are all affected by water temperature (see Cais-
sie [2006] for a review). Factors critical to the health of aquatic systems, such as dissolved oxygen, are also
dependent on temperature. Warm water tends to hold less dissolved oxygen than cold water, and dissolved
oxygen levels tend to be lower in the warmer months than the cooler ones. Effects of temperature change
therefore can lead to significant biological effects as more oxygen is required by fish and other organisms
in summer months. Stefan et al. [2001], for example, predicts that increases in water temperature will result
in increases in summer-time killing of fish in lakes. Flebbe et al. [2006] indicates that changes in temperature
will result in dramatic changes in the habitat for brook trout (see also Keleher and Rahel [1996]; Minns et al.
[1995]).

Models describing the change in water temperature associated with changes in air temperature are there-
fore critical in determining the effects of temperature change on aquatic systems, especially under climate
change. Various models have been proposed to predict water temperature using air temperature data at
different time scales, and the choice of a model depends on the availability of information on factors affect-
ing water temperature, the purpose of the study, temporal and spatial aspects of the data, as well as the
time step and duration of measurement [Mohseni et al., 1998; Caissie, 2006; Mayer, 2012].

Water temperature is affected by a number of physical and environmental factors [Webb, 1996], including
weather conditions, flow, shading, depth, and topography [Chen et al., 1998; St-Hilaire et al., 2000]. Physical
models that consider the heat transfer between the water and the surroundings environment tend to be
rich in independent variables that are included in the model, have a range of time steps, and are detailed in
terms of how factors influence water temperature [Sinokrot and Stefan, 1993]. The data required to
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implement a full deterministic model are not always available, i.e., it is difficult to measure all factors over a
reasonable time frame and incorporate them into the model through an estimation procedure.

Statistical models have been used to study the air and water temperature relationship [Benyahya et al.,
2007], and tend to work well for weekly mean temperature. Among different statistical methods, parametric
regression models such as the linear regression model are easily implemented; all the inference tools are
established and simple. Another advantage of parametric regression models is the interpretability. Parame-
ters in the model have meaningful interpretation. Neumann et al. [2003], for example, developed a linear
regression method to model daily maximum stream temperature in terms of maximum air temperature and
other related predictors for the Truckee River in California and Nevada. The majority of the statistical models
focus on weekly or greater time steps. This is partly a result of the data collection process and validity of the
model. Caissie [2006] pointed out that linear regression models were more valid at weekly or monthly scales
than at a daily scale. At these scales, autocorrelation tends to be less than that at a daily scale and the nor-
mality assumption is reasonable when average temperature is used. A characteristic of the water-air tem-
perature relationship in streams that affects model choice is that water temperature often remains relatively
constant when the air temperature is below 0�C. In this case, the simple parametric linear regression model
might not be a good model, as the relationship becomes nonlinear. To address this weakness, nonlinear
parametric models might be more applicable.

The most commonly used nonlinear parametric regression model for the air-water temperature relationship
is the logistic model [Mohseni et al., 1998]. The model describes the relationship between air and water tem-
peratures as

W5l1
a2l

11ecðb2AÞ ; (1)

where W is the measured stream temperature, A is the measured air temperature, and a, b, c, and l are
parameters. Compared to the linear regression model, the logistic model provides a good explanation of
the flat patterns in water temperature for low (<0�C) and sometimes for high (>20�C) air temperature. The
nonlinear relationship is appropriate because water temperature is less sensitive to air temperature in the
cold seasons (air temperature less than 0�C) due to flow and the potential for freezing. In the warm seasons
(air temperature greater than 20�C), as air temperature increases, the increase in water temperature may be
small due to the high rate of evaporative cooling. As the S-shaped logistic function flattens at both ends of
the range of air temperature, the logistic model easily accommodates these phenomena. A physical inter-
pretation was also given in Mohseni and Stefan [1999]. Several recent studies have used the logistic model
for modeling streams [Webb et al., 2003; Mayer, 2012]. There are two potential problems that limit the use
of the logistic model, especially, at the daily time scale. First, in some situations, daily water and air tempera-
tures have high variability at certain temperatures, and this results in poor prediction (despite reasonably
high goodness of fit statistics). If this variability is associated with seasonality, the standard logistic model
would not address this, resulting in greater variance and weaker predictive ability. This is described as hys-
teresis (stream temperature being different for the same air temperature at different times of the year) in
Mohseni et al. [1998]. Second, daily water temperatures are likely to have high autocorrelation over time.
The autocorrelation affects inference and confidence in parameter estimates. This dependence across time
is not taken into account by the standard logistic model, hence the variance estimates, prediction, and
hypothesis testing might not be accurate at a daily time scale.

Compared to the parametric model, nonparametric regression models often provide good prediction of
water temperature. The nonparametric models usually have simple assumptions and therefore are widely
applicable in different situations. Modern approaches to handle temporal correlation are possible and the
nonparametric models can effectively improve the prediction accuracy [Chenard and Caissie, 2008]. An
example of a nonparametric model is the k-nearest neighbor method which was used to predict and fore-
cast water temperature [Benyahya et al., 2008; St-Hilaire et al., 2012]. One drawback of such nonparametric
models is the difficulty in interpreting the parameters in the model.

Time series models and models based on stochastic processes were designed to focus on the stochastic
components of the data as well as the deterministic component [Caissie et al., 1998; Cluis, 1972; Kothandara-
man, 1971, 1972; Stefan and Preud’homme, 1993]. Most of the stochastic models use a daily time step and
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model variation in relationships over time. Time series models might be useful for forecasting future obser-
vations and with rich data might result in accurate predictions [Cho and Lee, 2012]. One drawback of time
series models is that they might not directly model the relationship between air temperature and water
temperature and hence parameters in the model would not be helpful in determining the strength of the
relationship and the sensitivity of water temperature to air temperature. For example, Ahmadi-Nedushan
et al. [2007] added lagged air temperature residuals to their model of water temperature rather than actual
air temperature. Cho and Lee [2012] linked air and water temperature by assuming that the ratio and/or dif-
ference of the harmonic coefficients between the air and water temperatures remained constant.

The focus of this work is to develop models relating daily maximum air and water temperatures. Daily maxi-
mum temperature was selected over weekly averages as the variable of interest because the maximum
water temperature has been linked to loss of brook trout, a temperature sensitive species [Trumbo et al.,
2010]. This work is part of a larger study whose goal is to identify streams in southeastern United States
that are likely to lose trout due to increased temperature. Hence, measuring and visualizing sensitivity of
water temperature to changes in air temperature is an important goal. In this work, we propose the use of a
time-varying coefficient model (VCM) to study the relationship between daily water temperature and daily
air temperature (see Fan and Zhang [2008] for an overview of the VCM). The VCM is an effective tool for
exploring the dynamic feature of the data and has been widely applied in different areas such as ecology
[Ferguson et al., 2007, 2009] and medicine [Cheng et al., 2009]. The key idea of the VCM is to use a paramet-
ric model but with time-varying coefficients. The parametric property of the VCM provides meaningful inter-
pretation of the sensitivity of stream water temperature to changes in air temperature, aids in
understanding how sensitivity varies over time, and provides a way to compare sensitivity across streams.

The varying coefficient model is a useful model in situations where there is a significant amount of variabili-
ty in water temperature that is not accounted for by air temperature but might be related to unmeasured
factors that vary over time. For example, the natural cycle of temperature suggests that the water tempera-
ture in streams will be different for the same value of air temperature at different times of the year. Thus, an
air temperature of 10�C might be associated with a different water temperature in the spring than in the
fall. In this situation, both the linear regression and the nonlinear logistic regression might result in reasona-
ble model fit statistics but may not provide accurate prediction of water temperature based on air tempera-
ture as these models overlook the time (seasonal) information in the data. For similar air temperatures at
different times of the year, daily water temperature varies considerably but the resulting predictions of
water temperature would be almost constant. The proposed VCM surmounts this difficulty by taking the
time information into account and modeling the temporally dynamic pattern of the air-water temperature
relationship through varying coefficients. Therefore, it can achieve more accurate predictions when the
same air temperature occurs at different times of the year. Moreover, the proposed modeling strategy bet-
ter explains the sensitivity of water temperature to the air temperature across time, providing a more com-
prehensive understanding of the air-water relationship in different time periods. Modeling the relationship
with additional terms other than time-varying coefficients (e.g., seasonal terms) is possible but might be
complicated, especially when using the logistic model, and requires choices about the number of seasonal-
ity terms to add to the model and the period associated with seasonality.

In this paper, we apply the VCM to daily maximum temperature data from 10 native brook trout streams in
southeast United States and show that the VCM has predictions that are superior to the logistic or linear
models. In addition, the VCM can be used to interpret the air and water temperature relationship over time.

2. Study Area and Data

As part of a study on water temperature and brook trout, paired (air and water) thermographs (HOBO
Watertemp Pro v2; accuracy 0.2�C; drift< 0.1 annually) [Onset Computer Corporation, 2009] were placed at
the pour point of randomly selected stream catchments in southeast USA. (The pour point or outlet of the
watershed is the point in the watershed that all water flows through.) The stream catchments were selected
from a statistical population of over 1000 catchments known to support brook trout. A stratified approach
was used based on information on area of the catchment, elevation, forest cover, and solar radiation. Addi-
tional details on site characteristics, study design, and sampling were given in Trumbo et al. [2010]. All
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thermographs were set to record every 30 min [Dunham et al., 2005; Huff et al., 2005] for one year starting
in December 2010.

Thermographs were calibrated before and after deployment following methods summarized in Dunham
et al. [2005]. Because stream channels may become dry during summer low flow periods, thermographs
used to record water temperatures were placed near the deepest location in the stream segment when pos-
sible [Lisle, 1987]. A shield was used to reduce direct solar radiation heating on air temperature thermo-
graphs [Dunham et al., 2005; Trumbo et al., 2012].

We screened the raw air and water temperature series to identify outliers and other oddities resulting from
thermograph malfunctions, launch/recording interval errors, or potentially dry stream beds. Preliminary
analyses were also conducted to ensure data quality. Scatterplots of water and air temperatures were drawn
to evaluate the joint relationship and to look for irregularities in the daily maximum air and water tempera-
ture. Index plots of lagged one-day differences were also used to identify oddities (rapid change) in temper-
ature and potentially dry streams. For this work, 10 streams located in the states of Maryland, West Virginia,
Virginia, North Carolina, and Georgia were used, and their locations are shown in Figure 1. For each site, we
extracted one complete year of data with the same starting date (14 December 2010) and ending date (14
December 2011). To summarize the daily data, daily maximum values were used. The data that were input
into the models consisted of 366 paired daily maximum air and water temperatures for each site.

3. Varying Coefficient Model

Let Wt be the maximum water temperature and Zt be the maximum air temperature in day t, t 5 1,2,. . .,T
and T 5 366 is the total number of days in the data set. Without loss of the generality, we use centered air
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Figure 1. Location of 10 streams (black dots are the locations). From north to south, the site IDs are: Site 5, Site 6, Site 10, Site 9, Site 2, Site
1, Site 8, Site 7, Site 4, and Site 3.
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temperature, i.e., At5Zt2�Z , where �Z5 1
T

PT
t51 Zt . We consider the following varying coefficient model for

the air-water temperature relationship as

Wt5h0ðtÞ1Ath1ðtÞ1�t; (2)

where h0(t) and h1(t) are varying intercept and slope coefficients and �t is the error term in the model.
Exploratory analysis using lag-1 autocorrelation of residuals and the Shapiro-Wilk test [Kutner et al., 2004]
indicated that the error terms were neither normally distributed nor independent. Levene’s test [Kutner
et al., 2004] indicated that the assumption of constant variance in the error terms was reasonable. Based on
these analyses, we assume Eð�tÞ 50 and var ð�tÞ5r2. Note that the proposed model has a similar format as
the linear regression model Wt5h01Ath11�t . These varying coefficients can be interpreted as the dynamic
feature of the air-water temperature relationship. That is, at different times and seasons, water temperature
and sensitivity of water temperature to changes in air temperature can be different. This allows for a sea-
sonal effect on the air-water temperature relationship. The full VCM is thus useful for following changes in
the maximum water temperature over time (through the intercept) and for measuring the local sensitivity
of the relationship (through the slope). Variants of the varying coefficient model can accommodate flexibil-
ity in model interpretation. For instance, one can consider a semivarying coefficient model, which has the
following form

Wt5h01Ath1ðtÞ1�t: (3)

In model (3), the intercept h0 is a fixed parameter. Hereafter, we call model (2) the full VCM and model (3)
the semi-VCM. The fixed intercept h0 in model (3) represents the average maximum water temperature for
the whole period. The varying slope h1(t) in model (3) represents variation in slope relative to the simple lin-
ear regression. The time-varying slope provides information about the degree of deviation from a common
slope. Also the times when the variation is the greatest may be relevant. Therefore, depending on the objec-
tive, one can choose either the full VCM or the semi-VCM to describe the local or global behavior of the
water temperature, given the air temperature. For presentation convenience, the full VCM will be used to
illustrate the details of the proposed methodology; the equations can be easily adapted to the semi-VCM.

3.1. Estimation of Coefficients
Two popular methods for estimating the varying coefficients h0(t) and h1(t) are kernel-local polynomial
smoothing and smoothing spline methods [Fan and Zhang, 2008]. In this work, we adopt the penalized
spline regression method as it has parsimonious parameter expression with easy interpretation [Ruppert
et al., 2003]. Specifically, the penalized spline approach assumes the varying coefficients have the form

h0ðtÞ5
XK

i51

aibiðtÞ; (4)

h1ðtÞ5
XK

i51

bibiðtÞ; (5)

where fb1ðtÞ; . . . ; bKðtÞg is the set of basis functions and ai and bi, i 5 1,2, . . ., K are parameters. K is the
number of basis functions for each varying coefficient.

The key is to estimate the coefficients ai and bi such that the estimates make the series of varying coeffi-
cients h0(t) and h1(t) smooth. To achieve this purpose, we use least squares with a penalty to encourage
smoothness [Hoover et al., 1998]. Specifically, we obtain the estimates by minimizing

XT

t51

ðWt2h0ðtÞ2Ath1ðtÞÞ21k
ð

h000ðtÞ
2dt1

ð
h001ðtÞ

2dt

� �
; (6)

where h0(t) and h1(t) were given in (4) and (5) and k is a tuning parameter for controlling the
smoothness of varying coefficients. Given the observed data, we can write the vector of water temperatures
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as W5ðW1; . . . ;WT Þ0 and the vector of air temperature as A5ðA1; � � � ; AT Þ0. Denote X5ðb1; . . . ;bK ;b1�

A; . . . ;bK �AÞT3ð2KÞ, where bi5ðbið1Þ; . . . ; biðTÞÞ0; i51; . . . ; T , and � is the Schur product. It is easy to obtain
the estimated parameter set, given k, as

ðâ1; . . . ; âK ; b̂1; . . . ; b̂KÞ05ðX0X1kDÞ21X0W; (7)

where D is a 2K by 2K diagonal penalty matrix with diagonal elements either 0 or 1. Consequently, the esti-
mates of the varying coefficients are ĥ0ðtÞ5

PK
i51 â ibiðtÞ and ĥ1ðtÞ5

PK
i51 b̂ i biðtÞ.

3.2. Tuning Parameter Selection
Note that there is a tuning parameter k that controls the smoothness of the varying coefficients and influen-
ces the model fit. To select an optimal tuning parameter k, one commonly used approach is leave-one-out
cross-validation (LOOCV) suggested by Hoover et al. [1998]. Let ĥ

ð2iÞ
0 ðtÞ and ĥ

ð2iÞ
1 ðtÞ be the varying coeffi-

cients estimated by minimizing (6) by using data with the ith observation deleted. The LOOCV (k) is defined
as

LOOCVðkÞ5
XT

i51

ðWi2ĥ
ð2iÞ
0 ðiÞ2Aiĥ

ð2iÞ
1 ðiÞÞ2: (8)

One can choose the optimal tuning parameter kloocv as the value minimizing LOOCVðkÞ. However, there are
T 5 366 data points for each site, and implementing such a method can be computationally expensive. To
circumvent this difficulty, we adopt the generalized cross-validation method (GCV) [Wahba, 1990] to
approximate the leave-one-out cross-validation method. Here the GCVðkÞ is defined as

GCVðkÞ5ðŴ2WÞ0ðŴ2WÞ=ð12tr ðSkÞ=TÞ; (9)

where Sk5XðX0X1kDÞ21X0 is the so-called hat matrix, Ŵ t5ĥ0ðtÞ1Atĥ1ðtÞ is the fitted water temperature
based on the proposed model using the entire data set and Ŵ5ðŴ 1; � � � ; Ŵ T Þ0. Then the optimal tuning
parameter kGCV is the one minimizing GCV (k). The GCV often gives a very reasonable approximation to the
LOOCV and can effectively reduce the computational time [Ruppert et al., 2003].

3.3. Model Assessment: Fitting and Inference
To evaluate the goodness of fit for the proposed VCMs, the Nash-Sutcliffe coefficient (NSC) [Nash and Sut-
cliffe, 1970] is used as a performance measure

NSC 512

PT
t51 ðWt2Ŵ tÞ2PT
t51 ðWt2 �W Þ2

; (10)

where �W 5 1
T

PT
t51 Wt . In the linear regression model, the NSC is equivalent to the coefficient of determina-

tion, i.e., R2 [Rencher and Schaalje, 2008]. To compare the fit of different models, we define the relative NSC
(RelNSC) using the linear regression model as the baseline, i.e.,

RelNSC 5
NSC 2NSC0

NSC0
3100%; (11)

where NSC0 is the NSC of the linear regression model. A higher RelNSC means a better fit. Note that the
RelNSC of the linear regression model is 0%. Here we remark that for fitting the nonlinear logistic model, we
followed the two-step iterative estimation method used in Mohseni et al. [1998]: iterate the step of estimat-
ing a and l by least squares and the step of estimating b and c by Newton’s method.

Although the VCM has a varying coefficient form, inference and testing for VCM is straightforward by using
parameter estimation in (7). Similar to routine regression modeling, one can take advantage of model nest-
ing to evaluate model fit. That is, one can conduct a statistical hypothesis test to check whether the VCM is
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significant relative to the linear regression model or some other reduced model. Under such a considera-
tion, the null hypothesis is that none of the coefficients are time varying, i.e.,

H0 : h0ðtÞ5h0and h1ðtÞ5h1 (12)

versus the alternative that at least one of the coefficients is not constant. Suppose the two models under
the null and the alternative hypothesis are M0 and M1, respectively

M0 : Wt5h01h1At1�t; (13)

M1 : Wt5h0ðtÞ1h1ðtÞAt1�t: (14)

Because of autocorrelation and lack of normality, a standard F test is not appropriate. To test the dif-
ference between the two models, we apply a block bootstrap goodness of fit test based on the com-
parison of sum of the squared residuals for the varying coefficient model [Huang et al., 2002]. Note
that there is no assumption of a specific distribution for �t in (2), hence bootstrap-based testing should
be more robust and reliable. Suppose ĥ0 and ĥ1 are parameter estimates for the model M0, and ĥ0ðtÞ
and ĥ1ðtÞ are parameter estimates for the model M1. We then can calculate the residual sum of
squares for each model, respectively

RSS05
XT

t51

ðWt2ĥ02ĥ1AtÞ2; (15)

RSS15
XT

t51

ðWt2ĥ0ðtÞ2ĥ1ðtÞAtÞ2: (16)

Using RSS0 and RSS1, we can define the test statistic G5
ðRSS02RSS1Þ=ð2K22Þ

RSS1=ðT22KÞ , which is the standard F test statistic
under the assumption that the error term �t ’s are independent and identically normally distributed [Rencher
and Schaalje, 2008]. A large value of the test statistic implies a significant difference between the two mod-
els. To assess the level of significance accurately, we adopt the block bootstrap method to compute the crit-
ical value [Huang et al., 2002]. Because water temperatures and residuals are highly autocorrelated through
time, the ordinary bootstrap is not appropriate and the block bootstrap [Kunsch, 1989] is therefore more
appropriate. The proposed bootstrap testing procedure is summarized as follows:

1. Calculate G5
ðRSS02RSS1Þ=ð2K22Þ

RSS1=ðT22KÞ using the original data.

2. Let

�̂t5Wt2ĥ0ðtÞ2ĥ1ðtÞAt

be the residual under the alternative hypothesis. Split the sample f�̂1; � � � ; �̂Tg into T2m11 overlapping
blocks of length m: observation 1 to m will be block 1, observation 2 to m 1 1 will be block 2, and so on.
Resample T/m blocks with replacement from the T2m11 blocks. Aligning these T/m blocks in the order
they were selected will give the new sample: f�̂�1; � � � ; �̂

�
Tg. Note that the last block has extra points when T/

m is not integer.

3. Let

W�t 5ĥ01ĥ1At1�̂
�
t

be the pseudoresponses under the null hypothesis.

4. Repeat steps 2 and 3 B times to obtain B bootstrap samples.

5. From each bootstrap sample, calculate Gb5
ðRSSb

02RSSb
1Þ=ð2K22Þ

RSSb
1=ðT22KÞ ; b51; 2; � � � ; B. Reject H0 if the value of statis-

tic G is greater than or equal to the f100ð12aÞg percentile of Gb, where a is the significance level.
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3.4. Model Assessment: Prediction
To evaluate the prediction performance of the VCM compared to the parametric models, for the data X5f
ðAt;WtÞ : t51; . . . ; Tg (T 5 366) from each site, we randomly partition two-thirds of the data as the training
set and the remaining as the test set. For each model compared, we calculate the root mean squared errors
(RMSE) of the test set using the model estimated by the training set, which is defined as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jYj2df

X
t2Y
ðWt2Ŵ tÞ2

s
; (17)

where Y is the test set and jYj is the number of the observations in set Y. In equation (17), df is the degree
of freedom in the model, where df is 14 for full VCM (there are seven bases for each of the two varying coef-
ficients), 8 for semi-VCM (since the intercept is fixed and there are seven bases for slope), 4 for the logistic
model, and 2 for the linear regression model.

4. Results

In this section, we fitted both the full VCM and semi-VCM to the data from 10 sites, respectively. The pro-
posed methods were compared to the linear regression model and the nonlinear logistic model. The merits
of the proposed VCM method will be examined through fit statistics, prediction, and interpretation of the
relationship between water and air temperature. In this work, all the analyses were implemented by R soft-
ware (version 2.15.3) [Hornik, 2013].

Figure 2 illustrates the data from Site 5. In Figure 2, we can see that although water and air temperature fol-
low a similar pattern, the variation of water and air temperatures is large in spring and fall. Therefore, the
prediction of the water temperature may be inaccurate if one ignores the temporal information in the
model.

4.1. Basis Selection and Fitting
For fitting the data using the proposed VCM method, we need to choose the form of basis functions in (4)
and (5). We considered three different polynomial bases as the candidates: linear, quadratic, and cubic
splines [Ruppert et al., 2003]. Analysis of the data using these three bases resulted in similar curves for the
estimated varying coefficients and also similar prediction performance. In this work, we chose to use
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Figure 2. Plots of water and air temperatures for Site 5.
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quadratic splines because they resulted in smoother coefficient curves than linear splines, and had fewer
parameters compared with cubic splines. Specifically, the bases we used are

f1; t; t2; ðt2n1Þ21; � � � ; ðt2nNÞ21g;

where n1; n2; � � � ; nN are N knots and ðt2nnÞ1; n51; 2; � � � ;N are the splines with ðt2nnÞ15t2nn if t � nk

and ðt2nnÞ150 if t < nn.

To select the number of knots, we fixed N 5 4 which corresponds to four seasons. The location of the knots
are evenly distributed in time, i.e., ðn1; n2; n3; n4Þ5ð74; 147; 220; 293Þ. Here numbers represent the day of
the year, staring from 14 December 2010, i.e., 14 December 2010 5 1. We also estimated the proposed
model and conducted prediction by using N 5 12. It provided similar results to those using N 5 4. Note that
choosing a relatively small number of knots reduces the number of parameters in the model and reduces
the curvature of the coefficient curves.

The columns 2, 3 and 4 of Table 1 show the RelNSC values for the full VCM, the semi-VCM, and the nonlinear
logistic model for the 10 sites. Comparing the results with the nonlinear logistic model, both full VCM and
semi-VCM have larger RelNSC values since they dynamically quantify the relationship between water and
air temperatures. Moreover, the full VCM fits the data better than the semi-VCM. Note that the use of a vary-
ing intercept could further adjust the mean water temperature at each time point. Therefore, the full VCM
better captures the variance of water temperature leading to higher RelNSC values.

As the proposed VCM method gives high RelNSC values, it is also important to check whether the VCM is
overfitting. We applied the goodness of fit test procedure described in section 3.3 to the full VCM and semi-
VCM for the 10 sites. The testing results show that both the full VCM and the semi-VCM are significantly dif-
ferent from the linear regression model (see the last two columns of Table 1 for p values) and the full VCM
is significantly different from the semi-VCM (with p value less than 0.001 for all 10 sites) at the level a 5 0.05
for each site. Such a finding implies that the time information in the VCM is important in explaining the vari-
ation in the data.

4.2. Prediction
Both full VCM and semi-VCM have more accurate predictions compared to the linear regression model and
the nonlinear logistic model. In section 3.4, we introduced a procedure for prediction validation. We
repeated this procedure 250 times for each site and reported the mean and the standard deviation of pre-
dicted RMSE for the 10 sites in Table 2. Figure 3 shows boxplots for RMSEs for different models based on
250 data partition for Site 1. (Boxplots for other sites could be found in supporting materials.) From the
results in Table 2 and Figure 3, the values of RMSE for the VCM methods are smaller than those for the linear
regression model and the nonlinear logistic model. The full VCM also has more accurate predictions than
the semi-VCM. The lower RMSEs indicate that the prediction accuracy of the VCM is improved through the
ability to incorporate the seasonal trend of the water temperature. An interesting observation is that, for
Site 9, the prediction of the linear regression model is slightly better than the nonlinear logistic model. An

Table 1. Model Assessment Results: Fit Statistics and Hypothesis Testsa

Site Logistic RelNSC (%) Semi-VCM RelNSC (%) Full VCM RelNSC (%) Semi-VCM p Value Full VCM p Value

5 1 5 14 <0.001 <0.001
6 2 7 15 <0.001 <0.001
10 0 3 7 <0.001 <0.001
9 0 7 13 <0.001 <0.001
2 0 2 11 <0.001 <0.001
1 0 3 9 <0.001 <0.001
8 2 7 15 <0.001 <0.001
7 1 6 14 <0.001 <0.001
4 0 5 26 <0.001 <0.001
3 2 10 21 <0.001 <0.001

aThe columns 2, 3 and 4 show the values of RelNSC fitted by using the three models (nonlinear logistic model, semi-VCM, and full
VCM). The last two columns show p values from hypothesis testing of semi-VCM and full VCM versus a linear regression model.
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explanation is that the air temperature is not below zero for a long enough period so the logistic model
does not describe the relationship as well as a linear regression.

The inaccurate predictions for the linear regression model and the logistic model could be partly explained
by the large variability in water temperature with respect to fixed values of air temperature. For elaboration,
we extracted 20 data points with air temperature around 20�C from the data for Site 3. Figure 4a shows the
corresponding water temperatures. Clearly, there is a large variation in the water temperature with values
varying from 7�C to 20�C (the circles in Figure 4a). As shown in Figures 4c and 4d, both the linear regression
model and the logistic model predict the water temperature to be around 13�C. The two models ignore the
time information in the data. They predict the water temperature by only using air temperature information
and hence predict an almost constant value for water temperature. Taking the time information into
account, the full VCM gives much more accurate predictions even at a fixed air temperature level. Figure 4b
shows that the predictions given by the full VCM are very close to the true values of water temperature.
Thus, although the NSC is high for the linear regression model and the logistic model, the prediction error
could be large due to the ignoring of temporal information. The maximum prediction error across the 10
sites for the linear regression model and the logistic model is around 7�C. For the full VCM, it is reduced to
3�C.

4.3. Model Interpretation
The proposed VCM method not only provides accurate predictions, but also gives meaningful interpreta-
tions. In the full VCM, the varying intercept term, h0(t), represents the mean water temperature at time t,
and the varying slope term, h1(t), represents the local sensitivity of water temperature to changes in air tem-

perature at time t. To elucidate, we reana-
lyzed the data of Site 5 for further
illustration. First, we divided the data set
into 12 disjoint subsets; each subset con-
sists of about 30 data points from 30 con-
secutive days in a month or so. Then we
analyzed these 12 monthly data sets using
the linear regression model. Figure 5
shows the estimated intercept and slope
for the 12 models for Site 5. The 12 inter-
cepts and slopes were plotted at the last
time point for each of the 12 subsets and
were connected by straight lines to have a
piecewise form. In addition, Figure 5
shows the coefficients for the full VCM,
semi-VCM, and the linear regression
model. For the varying intercept and the
varying slope in the full VCM, we can see
that the coefficients are very close to

Table 2. Predicted RMSE for 10 Sites for VCM, Logistic Model, and Linear Regression Modela

Site Linear Logistic Semi-VCM Full VCM

1 3.24 (0.19) 3.16 (0.18) 2.83 (0.17) 1.49 (0.10)
2 2.57 (0.13) 2.43 (0.13) 2.05 (0.11) 1.01 (0.06)
3 1.66 (0.08) 1.66 (0.09) 1.44 (0.09) 1.08 (0.08)
4 1.92 (0.09) 1.90 (0.10) 1.50 (0.09) 1.09 (0.08)
5 2.68 (0.19) 2.64 (0.18) 2.46 (0.18) 1.23 (0.07)
6 2.55 (0.14) 2.52 (0.14) 2.14 (0.15) 1.04 (0.06)
7 2.85 (0.16) 2.66 (0.15) 2.19 (0.14) 0.94 (0.06)
8 2.55 (0.13) 2.44 (0.13) 2.07 (0.12) 1.11 (0.06)
9 2.71 (0.16) 2.73 (0.16) 2.44 (0.16) 0.94 (0.05)
10 3.52 (0.18) 3.37 (0.19) 2.77 (0.18) 1.23 (0.07)

aThe mean and (standard deviation) are based on 250 different test sets for each site.

Full VCM Semi VCM Logistic Linear

1.
5
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0

2.
5

3.
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5

Figure 3. Boxplots of RMSEs for 250 random training and testing samples for
four models for Site 1.
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those in the 12 month piecewise linear regression. It shows that the full VCM can describe the local dynamic
relationship between water temperature and air temperature. Therefore, the full VCM is particularly useful if
one wants to study or predict water temperature in any particular season or time period over the year.

By incorporating the time information into the model, the full VCM is also able to automatically investigate
hysteresis in stream water temperatures. One common cause of seasonal hysteresis is the influx of cold rain
or snow melt in the spring, which results in spring water temperatures being lower than fall water
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is fixed around 20�C.
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temperatures at the same air temperature [Webb and Nobilis, 1997]. As shown in Figure 5, the estimated
varying intercept in the full VCM is larger in fall than that in spring. It indicates that the mean maximum
water temperature in fall is higher than the mean maximum water temperature in spring. Therefore, the full
VCM gives clear evidence for the presence of hysteresis at Site 5.

For the semi-VCM, the intercept h0 represents a global mean daily maximum water temperature and the
varying slope h1(t) tends to measure the ratio of the water temperature to air temperature given the mean
maximum water temperature for the whole year. In Figure 5, the intercept of the semi-VCM is very close to
the intercept of the linear regression model, which is the mean maximum water temperature for the year
for the centered data. Because semi-VCM uses a global intercept, its slope coefficient varies around the lin-
ear regression slope. Thus the semi-VCM provides information about the global sensitivity of water temper-
ature to changes in air temperature and how it varies over time.

To further demonstrate the properties of the semi-VCM, Figure 6 plots the intercepts and varying slopes of
the semi-VCM for the 10 sites. It is clear that the values of 10 intercepts are all between 10 and 15�C. The
slopes for the 10 sites tend to have a consistent pattern with a decline in spring and fall. The increased vari-
ability in air temperature results in a smaller slope in these periods. The range (the difference between the
maximum and the minimum) of the slope in the semi-VCM relates to the variance of water temperature,
and the location of maxima and the minima of the slope relates to the variance of the air temperature at dif-
ferent time points. So, by studying the slope curves in Figure 6, we obtain information about the similarity
and variance in the water and air temperature relationship for all 10 sites.

The full VCM captures the relationship on a level that is more local in time than the semi-VCM. Because of the
shorter focus, the slopes tend to be smaller and smoother as there is less change in temperature over shorter
time periods. As indicated in Figure 5, the majority of the variability is associated with the change in the inter-
cept of the full VCM. This is also the reason for the improved fit of the full VCM for the data sets. Therefore,
we suggest using the semi-VCM when the air and water variations are small and consider using the full VCM
when the air and water variations are large.

5. Discussion

The development and evaluation of the VCM require some choices which are discussed further below.
These include the selection of the number of knots, selection of smoothing parameter, and the evaluation
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of the VCM relative to the logistic model. The advantages of VCM and future work are also included in this
section.

5.1. Smoothing Parameter Selection
In section 3.2, we introduced LOOCV and GCV as methods to select optimal smoothing parameter k. There
are other criteria that might be used, such as maximum likelihood (ML), restricted maximum likelihood
(REML), and Mallow’s Cp statistic [Ruppert et al., 2003]. ML and REML are likelihood-based approaches and
are not appropriate for the case here because the VCM in this work does not rely on an assumed distribu-
tion. GCV is approximately equal to Cp and does not require a prior estimate of the variance of the error
term [Ruppert et al., 2003]. Therefore, we chose GCV as the criterion for smoothing parameter selection.

5.2. Knot Selection
Besides the tuning parameter k in (6), the number of knots also affects the smoothness of the varying coeffi-
cient curves. What is more, the number of knots determines the number of parameters in the VCM. In sec-
tion 4.1, we fixed the number of knots at N 5 4 because it provides both smooth varying coefficient curves
and high NSC statistics. Two commonly used criteria for model selection are the Akaike Information Criteria
(AIC) and Mallow’s Cp [Ruppert et al., 2003]. The AIC is a likelihood-based criterion and is not appropriate
here. An approach based on a statistic such as Cp could be used as we focus more on smoothness of the
coefficient curves and NSC as criteria for model selection. As part of a sensitivity analysis, we compared fits
using N 5 3 and N 5 5 knots as well as different degrees of polynomials for the spline models and chose to
use N 5 4 knots with quadratic splines as these choices resulted in smooth curves, parsimony, and good
cross-validation statistics.

5.3. Hypothesis Testing
In this work, we developed a block bootstrap hypothesis testing procedure for examining the VCM relative
to the linear regression model. However, we have not constructed a testing procedure to compare the VCM
with the nonlinear logistic model. Note that the logistic model is not a nested model of VCM. The usual
hypothesis testing approaches, such as those based on the F-test [Rencher and Schaalje, 2008], might not be
applicable. To evaluate the effect of using the VCM when the underlying model is the logistic model, we
conducted a simulation study. Specifically, using air temperatures from Site 5, water temperatures are simu-
lated based on the logistic function ðl50; a529:2;b512:9; c50:21Þ with standard normal errors. Because
water temperature could not be below zero, negative values in the simulated data are truncated to be zero
for water temperature. We generated 1000 simulation data sets and applied the two models to each data
set. The average NSC from the nonlinear logistic model was 0.97 and the average NSC from full VCM was
0.95. The results show that the VCM is comparable to the logistic model even when the true model is the
nonlinear logistic model.

5.4. Advantages of VCM Over Linear Model
It is worthwhile to note that for some sites, the linear regression model could fit the data quite well (for
example, NSC statistics for site 6 was 0.91). Even so, the proposed VCM method still has several merits com-
pared with the linear regression model. First, the linear regression model is a special, degenerate case of
the VCM. One could apply the goodness of fit test in section 3 to check whether the VCM is significantly dif-
ferent from the linear regression model. Moreover, by dynamically incorporating temporal information into
the model, the VCM will always improve the prediction accuracy of the estimated model. In addition, the
VCM provides a meaningful interpretation of the variation in the water-air temperature relationship over
time. For sites with high NSCs, the relationship between air and water temperatures might vary due to vari-
ous effects such as seasonal hysteresis. The VCM can automatically account for such variation in the air and
water relationship across time.

5.5. Future Work
Further analysis techniques might be applied to better understand the power of the VCM to accurately
model the air-water temperature relationship. First, point-wise or simultaneous confidence bands, con-
structed based on the estimated varying coefficients, could be used for predicting the range of the water
temperature. Second, the estimated varying coefficients in the proposed methods could be useful for clus-
tering different sites into groups for comparative purposes. For example, in Figure 6 we note that one slope
curve had a different pattern from the others. It might be of interest if the pattern of varying coefficient
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curves is connected to additional information such as elevation or solar radiation. Third, we currently build
the varying coefficient model for each site separately. If spatial correlation between sites is strong, we can
develop joint varying coefficient models to simultaneously consider all the sites. Fourth, this work applied
the VCM to 10 streams using one year of data. More data are currently being collected using paired thermo-
graphs throughout southeast U.S. We will extend the current VCM to incorporate additional terms in the
model.

6. Conclusions

We developed time-varying coefficient models for studying the relationship between daily maximum water
and air temperatures for 10 stream sites in Maryland, West Virginia, Virginia, North Carolina, and Georgia.
Statistical inferences using bootstrap hypothesis testing were also developed to examine the appropriate-
ness of the proposed models. The proposed method effectively quantifies the water-air temperature rela-
tionship allowing for flexibility in local or global trend. Both the proposed full VCM and semi-VCM result in
reasonably accurate prediction for the data from all 10 sites, having lower RMSEs than the linear regression
model and the nonlinear logistic model. Moreover, the proposed models provide meaningful interpreta-
tions of the temporally dynamic relationship between air and water temperature.

The VCM is superior for these data sets as the effect of seasonal hysteresis is a significant determinant of
water temperature. Mohseni et al. [1998, 1999] proposed separating the annual cycle into periods according
to the warming season and the cooling season, and suggested analyzing the air-water temperature relation-
ship separately as a way to address the problem. The full VCM is able to capture seasonal dynamics in water
and air temperatures without having to separate data into different time intervals. It thus automatically
accounts for the hysteresis in the streams using time-varying coefficients.
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